Evolution of 3D Scene Representations

From Features to Neural Fields to Gaussians

Jugal Alan

M. Tech AI, IIT Ropar

2024AIM1004

Outline: The Evolution Journey

- Distinctive Image Features from Scale-Invariant Keypoints (2004): SIFT
- Structure-from-Motion Revisited (2016): Modern 3D reconstruction
- **Nerf** (2020): Neural radiance fields for photorealistic rendering
- Instant-NGP (2022): Real-time neural graphics with hash encoding
- **3D Gaussian Splatting (2023):** Explicit primitives for real-time rendering

Key Question: How did we move from geometric pipelines to learned, real-time 3D representations?

Paper 1: SIFT - Scale-Invariant Feature Transform

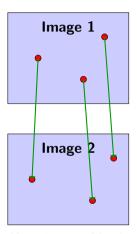
David Lowe, IJCV 2004

Core Idea:

- Detect and describe local features
- Invariant to scale, rotation, illumination
- Enable wide-baseline matching

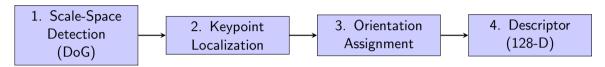
Impact:

- Backbone for SfM/MVS pipelines
- Enabled 3D reconstruction from images
- Foundation for modern feature matching



 $\bullet \ \mathsf{Keypoints}, \ \to \ \mathsf{Matches}$

SIFT: Technical Pipeline



Key Components:

- Difference of Gaussians (DoG): Efficient scale-space extrema detection
- Orientation histogram: Achieves rotation invariance
- Gradient-based descriptor: 4×4 grid of 8-bin histograms = 128 dimensions
- Matching: Nearest-neighbor with ratio test to reject ambiguous matches

Why it matters: Reliable correspondences across viewpoints \rightarrow enables 3D reconstruction

Paper 2: Structure-from-Motion Revisited

Schönberger & Frahm, CVPR 2016

Core Idea:

- Modern, robust incremental SfM
- Scales to thousands of images
- Produces camera poses + sparse 3D

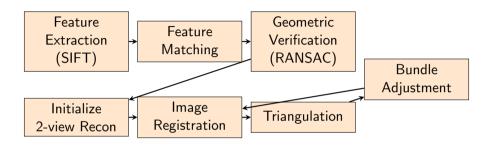
Output:

- Camera extrinsics & intrinsics
- Sparse 3D point cloud
- Foundation for COLMAP system

Impact:

- De facto standard for pose estimation
- Provides input for NeRF training

SfM: Incremental Reconstruction Pipeline



Bundle Adjustment: Joint optimization minimizing reprojection error

$$\min_{\{\mathbf{R}_i, \mathbf{t}_i\}, \{\mathbf{X}_j\}} \sum_{i,j} \rho \left(\|\pi(\mathbf{R}_i \mathbf{X}_j + \mathbf{t}_i) - \mathbf{x}_{ij}\|^2 \right)$$

Robustness: RANSAC outlier rejection, next-best-view selection, redundant view mining

Transition: From Geometry to Neural Rendering

Traditional: SfM + MVS

- ✓ Accurate geometry ✓ Explicit structure
- **★** Sparse reconstruction
- **★** Limited photorealism
- **★** Difficult novel views

Neural: NeRF

- ✓ Photorealistic rendering
- ✓ Continuous representation
 - ✓ Novel view synthesis
 - **★** Slow training/rendering
 - **★** Requires posed images

Key insight: SfM provides the camera poses that NeRF needs. Now we can move from geometric reconstruction to learned radiance fields!

Paper 3: NeRF - Neural Radiance Fields

Mildenhall et al., ECCV 2020

Core Idea:

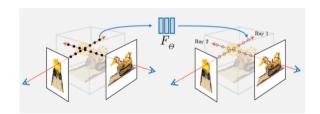
- Represent scene as continuous 5D function
- ullet Map $(\mathbf{x},\mathbf{d}) o (\sigma,\mathbf{c})$

Revolutionary aspects:

- Photorealistic novel views
- No explicit geometry needed
- Continuous representation

Limitations:

- Slow training (hours-days)
- Slow rendering (seconds/frame)
- Per-scene optimization



NeRF: Technical Details

Input: Posed images (from SfM/COLMAP)

Representation: MLP $F_{\theta}: (\mathbf{x}, \mathbf{d}) \rightarrow (\sigma, \mathbf{c})$

- $\mathbf{x} = (x, y, z)$: 3D position
- $\mathbf{d} = (\theta, \phi)$: viewing direction
- σ : volume density (geometry)
- $\mathbf{c} = (r, g, b)$: emitted color (appearance)

Volume Rendering Equation:

$$\mathbf{C}(\mathbf{r}) = \int_{t_n}^{t_f} T(t) \cdot \sigma(\mathbf{r}(t)) \cdot \mathbf{c}(\mathbf{r}(t), \mathbf{d}) dt$$

where transmittance $T(t) = \exp\left(-\int_{t_n}^t \sigma(\mathbf{r}(s))ds
ight)$

- Maps low-dimensional inputs to high-frequency features
- Enables MLP to represent fine details

NeRF: Training and Results

Training:

- Per-scene optimization (no generalization)
- Photometric loss: $\mathcal{L} = \sum_{\mathbf{r} \in \mathcal{R}} \|\mathbf{C}(\mathbf{r}) \mathbf{C}_{gt}(\mathbf{r})\|_2^2$
- Hierarchical sampling: coarse + fine networks
- Training time: hours to days per scene

Quality:

- State-of-the-art photorealistic novel view synthesis
- Captures complex view-dependent effects (reflections, specularities)
- Continuous representation allows arbitrary resolution

Bottleneck: Rendering requires querying MLP hundreds of times per ray ightarrow seconds per frame

Question: Can we keep the quality but make it fast?

Paper 4: Instant Neural Graphics Primitives

Müller et al., SIGGRAPH 2022

Core Idea:

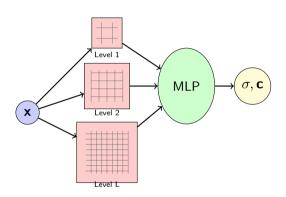
- Replace large MLPs with hash encoding
- Store features in compact hash tables
- Small MLP for final prediction

Speed gains:

- Train in seconds to minutes
- Real-time rendering (interactive fps)
- 1000× faster than original NeRF

Impact:

- Enabled practical applications
- Foundation for many follow-ups



Multiresolution Hash Encoding

Instant-NGP: Hash Encoding Explained

Key Innovation: Multiresolution hash grids replace positional encoding + small MLP

How it works:

- **1** Map 3D position **x** to multiple resolution levels L_1, L_2, \ldots, L_L
- ② At each level: hash x to compact table, retrieve feature vector
- **3** Concatenate all features $+ \mathbf{x} \rightarrow$ feed to tiny MLP (2 hidden layers, 64 neurons)
- **1** MLP outputs density σ and color **c**

Hash function:
$$h(\mathbf{x}) = \left(\bigoplus_{i=1}^{d} x_i \pi_i\right) \mod T$$

- T: hash table size (e.g., 2¹⁹)
- π_i : large prime numbers

Why it's fast:

- Hash lookups are O(1) and cache-friendly
- \bullet Small MLP \to fewer parameters, faster inference
- No expensive positional encoding computation

Instant-NGP: Performance Comparison

Method	Training Time	Rendering Speed	Quality (PSNR)
Original NeRF	1-2 days	30 sec/frame	31.0 dB
Instant-NGP	5-10 min	60+ fps	33.2 dB

Impact:

- Made NeRF practical for interactive applications
- Training time: days \rightarrow minutes (\sim **1000** \times **speedup**)
- Rendering: seconds \rightarrow real-time (\sim 100 \times speedup)
- Quality maintained or improved

From research curiosity to practical tool

Limitation: Still implicit representation \rightarrow volume rendering \rightarrow can we go faster with explicit primitives?

Paper 5: 3D Gaussian Splatting

Kerbl et al., SIGGRAPH 2023

Core Idea:

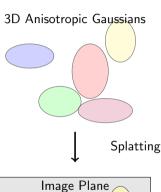
- Explicit 3D anisotropic Gaussians
- Differentiable splatting rasterization
- Adaptive density control

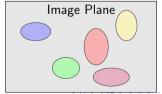
Breakthrough:

- Real-time rendering (¿30 fps at 1080p)
- Competitive quality with best NeRFs
- Editable, streamable representation

Advantages:

- Explicit primitives
- Memory efficient
- Enables editing/streaming





3D Gaussian Splatting: Representation

Each Gaussian is parameterized by:

- Position: $\mu \in \mathbb{R}^3$
- Covariance: $\Sigma \in \mathbb{R}^{3 \times 3}$ (anisotropic, full 3D ellipsoid)
- Opacity: $\alpha \in [0,1]$
- Color: Spherical harmonics coefficients for view-dependent appearance

3D Gaussian function:

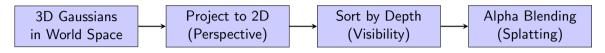
$$G(\mathbf{x}) = e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

Covariance representation: $\Sigma = RSS^TR^T$

- R: rotation (quaternion)
- **S**: scaling (3D vector)
- Ensures positive semi-definite covariance

Initialization: From SfM point cloud (COLMAP output)

3D Gaussian Splatting: Rendering Pipeline



Final Image

Key steps:

Operation: Transform 3D covariance to 2D via Jacobian of perspective projection

$$\mathbf{\Sigma}' = \mathbf{J} \mathbf{W} \mathbf{\Sigma} \mathbf{W}^T \mathbf{J}^T$$

- 2 Tile-based rasterization: Sort Gaussians by depth per screen tile (GPU-friendly)
- 3 Alpha compositing: Front-to-back blending

$$\mathbf{C} = \sum_{i=1}^{N} \mathbf{c}_i \alpha_i \prod_{j=1}^{i-1} (1 - \alpha_j)$$

3D Gaussian Splatting: Optimization

Loss function: $\mathcal{L} = (1 - \lambda)\mathcal{L}_1 + \lambda\mathcal{L}_{D\text{-SSIM}}$

Adaptive density control: Key to quality

• Clone: Large Gaussians in under-reconstructed areas

• Split: Large Gaussians with high gradients (need more detail)

• **Prune:** Gaussians with low opacity ($<\epsilon_{lpha}$)

Applied every N iterations during training

Training time: 30 minutes on RTX 3090 (vs days for NeRF)

Rendering speed: Real-time at 1080p (¿30 fps)

Method	Quality (PSNR)	Rendering Speed
Mip-NeRF 360	27.7 dB	0.3 fps
Instant-NGP	25.5 dB	6 fps
3D Gaussian Splatting	27.2 dB	138 fps

3D Gaussian Splatting: Trade-offs

Advantages:

- Real-time, high-quality rendering
- ullet Explicit representation o editable, streamable
- Fast training (30 min vs days)
- Memory efficient for bounded scenes
- Enables applications: VR, games, robotics

Limitations:

- Gaussian count can grow (millions for complex scenes)
- Less naturally handles unbounded scenes than some NeRF variants
- Explicit primitives may have artifacts at boundaries
- Still requires SfM preprocessing (camera poses)

Extensions:

- 4D Gaussians for dynamic scenes (CVPR 2024)
- Gaussian Splatting SLAM for real-time mapping (CVPR 2024)

Evolution Timeline: The Full Picture

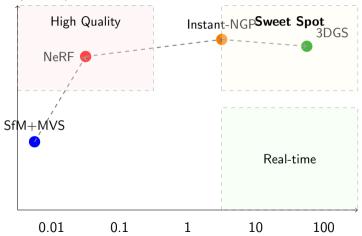
SIFT Features	SfM Geometry	NeRF Neural Fields	Instant-NGP Fast Neural	3DGS Explicit
-	•	•	•	
2004	2016	2020	2022	2023

Key transitions:

- ullet Geometric era: Features + optimization o accurate but sparse
- ullet Neural implicit era: Continuous fields o photorealistic but slow
- ullet Explicit learned era: Optimized primitives o real-time + quality

Quality vs Speed: The Trade-off Space

Quality (PSNR)



Rendering Speed (fps)

When to Use Each Method?

Method	Use When	Avoid When	
SIFT + SfM	Need accurate geome-	Need photorealistic ren-	
	try, camera calibration,	dering or dense recon-	
	sparse 3D	struction	
NeRF	Prioritize quality over	Need real-time or inter-	
	speed, offline rendering,	active rates	
	research		
Instant-NGP	Need balance of qual-	Need absolute best qual-	
	ity and speed, interactive	ity or real-time deploy-	
	preview	ment	
3DGS	Real-time render-	Extremely large un-	
	ing, VR/AR, games,	bounded scenes, limited	
	robotics/SLAM	memory	

Practical recommendation:

Future Directions & Applications

Active research areas:

- **Generalization:** Move from per-scene to single model (e.g., pixelNeRF, generalizable NeRFs)
- Dynamic scenes: 4D Gaussians, D-NeRF, Neural Scene Flow
- Large-scale: City-scale reconstruction, satellite imagery
- **Sparse inputs:** Few-shot reconstruction, single image
- Semantic understanding: Combine with segmentation, object-level editing

Real-world applications:

- Robotics/SLAM: Gaussian Splatting SLAM, real-time mapping
- VR/AR: Immersive environments, photorealistic avatars
- Film/VFX: Virtual production, view synthesis
- E-commerce: Product visualization, virtual try-on
- Cultural heritage: Digital preservation, virtual museums

Summary: Key Takeaways

- SIFT: Local features enable wide-baseline matching
- SfM: Geometric reconstruction produces camera poses + sparse 3D
- NeRF: Neural radiance fields achieve photorealistic novel views
- Instant-NGP: Hash encoding brings NeRF to interactive speeds
- 3DGS: Explicit Gaussians enable real-time with quality

The evolution in one sentence:

From geometry to neural implicit to explicit learned primitives

Questions?

References

- Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. IJCV.
- 2 Schönberger, J. L., & Frahm, J. M. (2016). Structure-from-motion revisited. CVPR.
- Mildenhall, B., et al. (2020). NeRF: Representing scenes as neural radiance fields for view synthesis. ECCV.
- Müller, T., et al. (2022). Instant neural graphics primitives with a multiresolution hash encoding. SIGGRAPH.
- **Solution** Second Secon